CONTENTS OF THE BASIC RAILWAY ENGINEERING COURSE

1. INTRODUCTION
 1.1 Historic development
 1.2 Railways
 1.3 Tramways and metro
 1.4 Operational aspects
 1.4.1 Functions of a railway company
 1.4.2 Infrastructure
 1.4.3 Rolling stock
 1.4.4 Personnel
 1.4.5 Electrification
 1.4.6 Catenary systems
 1.4.7 Road crossings
 1.4.8 Major rail infrastructure projects
 1.4.9 Developing countries
 1.5 Geometry of a railway line
 1.5.1 Clearances
 1.5.2 Alignment
 1.6 General track considerations
 1.6.1 Track requirements
 1.6.2 Load-bearing function of the track
 1.6.3 Track geometry components

2. WHEEL-RAIL PRINCIPLES
 2.1 Wheel-rail guidance
 2.2 Wheelset and track dimensions
 2.3 Conicity
 2.4 Lateral movement of a wheelset on straight track
 2.4.1 Theory according to Klingel
 2.4.2 Hunting movement
 2.5 Equivalent conicity
 2.6 Worn wheel profiles
 2.7 Wheel-rail contact stresses
 2.7.1 Hertz theory
 2.7.2 Hertz patterns
 2.7.3 Hertz spring constant
 2.7.4 Single and two-point contact between wheel and rail
 2.7.5 Spreading forces
 2.7.6 Wheel-rail creep
 2.7.7 Spin
 2.8 Train resistances
 2.8.1 Types of resistances
 2.8.2 Required pulling force
 2.8.3 Adhesion force

3. CURVES AND GRADIENTS
 3.1 General considerations
 3.2 Horizontal curves
 3.2.1 Curve radius/curvature
 3.2.2 Curve effects
 3.3 Superelevation (or cant)
 3.3.1 General considerations
 3.3.2 Cant deficiency
 3.4.1 General remarks
 3.4.2 Clothoid
 3.4.3 Cubic parabola
 3.4.4 Curve displacement
 3.4.5 Cross level transitions
 3.4.6 Relation with the transition curve
 3.5.1 Length of normal transition curve
 3.5.2 Adjacent curves
 3.5.3 Maximum cant
 3.5.4 Guidelines for permissible quasi-static accelerations

4. TRACK LOADS
 4.1 General
 4.2 Axle loads
 4.3 Line classification
 4.4 Tonnages
 4.5 Speeds
 4.6 Causes and nature of track loads
 4.7 Vertical forces
 4.7.1 Total wheel load
 4.7.2 Tilting risk
 4.8 Lateral forces
 4.8.1 Total lateral load
 4.8.2 Derailment risk
 4.8.3 Lateral force on the track
 4.9 Longitudinal forces
 4.9.1 Causes
 4.9.2 Temperature forces
 4.9.3 Track creep
 4.9.4 Braking load
 4.10 Influence of higher speeds and increased axle loads
 4.10.1 Speed
 4.10.2 Increase in axle loads
 4.11 Wheel flats
 4.12 Forces due to bad welds
 4.13 Axle box accelerations

5. TRACK CONSTRUCTION
 5.1 Introduction
5.2 Formation
5.3 Ballast bed
5.4 Rails
5.4.1 Functions
5.4.2 Types of profile
5.4.3 Geometry of flat-bottom rail
5.4.4 Modern rail manufacturing
5.4.5 Ingot casting
5.4.6 Continuous casting
5.4.7 Finishing shop
5.5 Rail properties
5.5.1 Metallurgical fundamentals
5.5.2 Heat treatment
5.5.3 Rail grades
5.5.4 Wear resistance
5.5.5 Fatigue strength
5.6 Rail failures
5.6.1 Introduction
5.6.2 Fatigue crack
5.6.3 Corrugation
5.7 Rail joints and welds
5.7.1 Introduction
5.7.2 Fish-plated joints
5.7.3 Expansion joints and expansion devices
5.7.4 Bridge transition structures
5.7.5 Insulated joint
5.7.6 Flash butt weld
5.7.7 Thermit weld
5.7.8 Electric arc weld
5.8 Sleepers
5.8.1 Introduction
5.8.2 Timber sleepers
5.8.3 Concrete sleepers
5.8.4 Steel sleepers
5.9 Fastenings
5.9.1 Introduction
5.9.2 Subdivision of fastenings
5.9.3 Baseplates
5.9.4 Elastic fastenings
5.9.5 Rail pads

6. TRACK SYSTEMS
6.1 Level crossings
6.1.1 Lightweight universal plates
6.1.2 Heavy universal plates
6.1.3 Harmelen level crossing
6.2 Track on structures
6.2.1 Track on structures with a continuous ballast bed and sleepers
6.2.2 Track on structures without a ballast bed
6.3 Direct fastening system
6.4 Reinforcing layers
6.5 Unconventional track systems
6.5.1 Ballasted track versus ballastless track
6.5.2 Use of ballastless track
6.5.3 Track resilience

6.5.4 Transition between plain track and bridge
6.6 Tramway Track
6.6.1 Tramway track characteristics
6.6.2 Examples of paved-in tramway track
6.7 Crane Track
6.8 High speed track and heavy haul track
6.8.1 High Speed Track
6.8.2 Magnetic levitation Track
6.8.3 Heavy Haul Track

7. SWITCHES AND CROSSINGS
7.1 The standard turnout
7.1.1 Set of switches
7.1.2 Common crossing
7.1.3 Closure rail
7.1.4 Rails and sleepers in turnouts
7.2 Geometry of the turnout
7.3 High-speed turnouts
7.4 Notations used for switches and crossings
7.5 Types of turnout and crossing
7.6 Crossovers
7.7 Switch calculation
7.7.1 Relation between curve radius and crossing angle
7.7.2 Calculation of main dimensions
7.7.3 Geometrical design of switches and crossings
7.7.4 Short dictionary of turnout related words

8. STATIC TRACK DESIGN
8.1 Introduction
8.2 Calculation via beams on an elastic foundation
8.3 Double beam
8.4 Rail stresses
8.4.1 Stresses in rail foot centre
8.4.2 Stresses in the rail head
8.4.3 Rail stresses due to a combined Q/Y load
8.5 Sleeper stresses
8.6 Stresses on ballast bed and formation
8.6.1 Introduction
8.6.2 Vertical stress on ballast bed
8.6.3 Vertical stress on formation
8.6.4 Classes of quality of soils
8.7 Computer models
8.7.1 GEOTRACK program
8.7.2 Pasternak model

9. DYNAMIC TRACK DESIGN
9.1 Introduction
9.2 Dynamic principles
9.2.1 General
9.2.2 One mass spring system
9.2.3 Wheel/rail forces
9.3 Track modelling
9.3.1 Transfer function between track load and track displacement
9.3.1.1 Beam on an elastic foundation
9.3.1.2 Double beam
9.3.1.3 Beam on an elastic foundation (moving load)
9.3.2 Discrete support
9.4 Vertical wheel response
9.4.1 Hertzian contact spring
9.4.2 Transfer functions between wheel and rail
9.5 Applications of advanced dynamic models
9.5.1 Introduction
9.5.2 The RAIL program
9.5.3 The SPOOR program
9.6 Dynamic experiments
9.6.1 Introduction
9.6.2 Approach on Embedded Rail Structures
9.6.3 Data analysis
9.6.4 RAIL modelling and calculations of short specimens
9.6.5 Results of short specimens

10 TRACK STABILITY AND LONGITUDINAL FORCES.
10.1 Introduction
10.2 Simple track stability models
10.2.1 Straight beam in buckling in case of an elastic lateral resistance
10.2.2 Rail track buckling with misalignment and constant lateral shear resistance
10.3 Advanced track buckling models
10.4 Longitudinal forces
10.4.1 General considerations
10.4.2 Modelling of the longitudinal force problem
10.4.3 Example of longitudinal force calculations

11 TRACK MAINTENANCE
11.1 Introduction
11.2 General maintenance aspects.
11.3 Manual method of track geometry improvement
11.4 Rail-grinding trains
11.5 Correcting weld geometry
11.5.1 STRAIT principle
11.5.2 Mobile weld correction
11.6 Tamping machines
11.6.1 General considerations
11.6.2 Tamping principle
11.6.3 Smoothing principle of modern tamping machines

11.7 Stone blowing
11.8 Design tamping
11.9 Ballast stabiliser
11.10 Ballast cleaner
11.11 High temperatures
11.12 Maintenance of the track structure
11.12.1 Rails
11.12.2 Sleepers
11.12.3 Switch maintenance
11.13 General observations on track renewal
11.14 Manual track renewal
11.14.1 Renewal of sleepers
11.14.2 Renewal of rails
11.15 Mechanical track renewal
11.15.1 Introduction
11.15.2 Track possession
11.15.3 Gantry crane method
11.15.4 Track section method
11.15.5 Continuous method
11.15.6 Track renewal trains
11.16 Switch renewal
11.17 Track laying
11.17.1 General considerations
11.17.2 Track construction trains
11.17.3 Platow system
11.17.4 TGV tracks France

12 INSPECTION AND DETECTION METHODS
12.1 Ultrasonic rail inspection
12.1.1 Introduction
12.1.2 The NS ultrasonic train
12.1.3 Probe system
12.1.4 Detection area
12.1.5 NS Ultrasonic inspection program
12.2 Recording systems
12.2.1 Introduction
12.2.2 Some aspects of geometry recording
12.2.3 Assessment of track quality for maintenance decisions
12.2.4 The NS track recording system BMS
12.3 Recording of track geometry according to BMS-1
12.3.1 Selecting the measuring system
12.3.2 Measuring principle
12.3.3 Instrumentation
12.3.4 Signal analysis
12.3.5 Analog output
12.4 Recording of vertical rail and weld geometry using BMS-2
12.5. Deterioration of track geometry
12.5.1 Introduction
12.5.2 Deterioration rates of geometry
12.6. Computer-aided track maintenance and renewal
12.6.1 Philosophy
12.7 Basic data for predicting and planning
 12.7.1 Introduction
 12.7.2 Track geometry
 12.7.3 Management information
 12.7.4 Rational rail management
 12.7.5 ECOTRACK

13 RAILWAY-INDUCED GROUND VIBRATIONS AND NOISE
 13.1 Introduction
 13.2 Some definitions

13.3 Ground vibrations
 13.3.1 Introduction
 13.3.2 Wave propagation in soils
 13.3.3 Human perception
 13.3.4 Measured vibrations
 13.3.5 Vibration reduction
 13.3.6 Measures for ballastless track
 13.3.7 Measures for slab track
 13.3.8 Measures for tracks in the open

13.4 Railway noise